Extension of the furuta inequality and Ando-Hiai log-majorization
نویسندگان
چکیده
منابع مشابه
Complete Form of Furuta Inequality
Let A and B be bounded linear operators on a Hilbert space satisfying A ≥ B ≥ 0. The well-known Furuta inequality is given as follows: Let r ≥ 0 and p > 0; then A r 2 Amin{1,p}A r 2 ≥ (A r 2 BpA r 2 ) min{1,p}+r p+r . In order to give a self-contained proof of it, Furuta (1989) proved that if 1 ≥ r ≥ 0, p > p0 > 0 and 2p0 + r ≥ p > p0, then (A r 2 Bp0A r 2 ) p+r p0+r ≥ (A r 2 BpA r 2 ) p+r p+r ...
متن کاملFuruta Inequality and Its Related Topics
This article is devoted to a brief survey of Furuta inequality and its related topics. It consists of 4 sections: 1. From Löwner-Heinz inequality to Furuta inequality, 2. Ando–Hiai inequality, 3. Grand Furuta inequality, and 4. Chaotic order. 1. From Löwner-Heinz inequality to Furuta inequality. The noncommutativity of operators appears in the fact that t is not orderpreserving. That is, there ...
متن کاملA determinant inequality and log-majorisation for operators
Let $lambda_1,dots,lambda_n$ be positive real numbers such that $sum_{k=1}^n lambda_k=1$. In this paper, we prove that for any positive operators $a_1,a_2,ldots, a_n$ in semifinite von Neumann algebra $M$ with faithful normal trace that $t(1)
متن کاملThe Log-brunn-minkowski Inequality
For origin-symmetric convex bodies (i.e., the unit balls of finite dimensional Banach spaces) it is conjectured that there exist a family of inequalities each of which is stronger than the classical Brunn-Minkowski inequality and a family of inequalities each of which is stronger than the classical Minkowski mixed-volume inequality. It is shown that these two families of inequalities are “equiv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1995
ISSN: 0024-3795
DOI: 10.1016/0024-3795(93)00203-c